
978-1-4799-8461-9/15/$31.00 c©2015 IEEE

1

Mobile Network Resource Optimization
under Imperfect Prediction

Nicola Bui12, Joerg Widmer1
1IMDEA Networks Institute, Leganes (Madrid), Spain

2UC3M, Leganes (Madrid), Spain

Abstract—A highly interesting trend in mobile network opti-
mization is to exploit knowledge of future network capacity to
allow mobile terminals to prefetch data when signal quality is high
and to refrain from communication when signal quality is low.
While this approach offers remarkable benefits, it relies on the
availability of a reliable forecast of system conditions. This paper
focuses on the reliability of simple prediction techniques and
their impact on resource allocation algorithms. In addition, we
propose ICARO, a resource allocation technique that is robust to
prediction uncertainties. The algorithm combines autoregressive
filtering and statistical models for short, medium, and long
term forecasting. We validate our approach by means of an
extensive simulation campaign based on real measurement data
collected in Berlin. We show that our solution performs close
to an omniscient optimizer and outperforms a limited horizon
omniscient optimizer by 10− 15%. Our solution provides up to
30% saving of system resources compared to a simple solution
that always maintains a full buffer and is close to optimal in
terms of buffer under-run time.

I. INTRODUCTION

“Every form of behavior is compatible with determinism.
One dynamic system might fall into a basin of attraction and
wind up at a fixed point, whereas another exhibits chaotic
behavior indefinitely, but both are completely determinis-
tic” [1]. In his provocative essay, Ted Chiang is suggesting
that unpredictability is just a consequence of the limitedness
of human comprehension. While we do not assume that mobile
networks are deterministic, in this paper we take resource
optimization in mobile networks one step further by exploiting
the predictability of future network capacity.

Mobile networks are increasingly constrained by limited
spectral resources, while at the same time user traffic demands
are growing steadily [2]. Researchers are addressing this
challenge from a variety of perspectives including massive
multiple-input multiple-output communications, heterogeneous
networks combining femto, micro and macro cells, device-to-
device communication, and the concept of exploiting knowl-
edge about user behavior and the network itself for perfor-
mance optimization.

Recent studies [3] highlight how network dynamics [4]
can be understood, predicted and linked to human mobility
patterns [5]. This ability to predict user and network behavior
allows optimizing resource allocation [6], [7]. As such, it is a
highly interesting approach to increase the efficiency of mobile
networks and deal with future traffic growth.

In this paper, we propose a resource allocation algorithm
for mobile networks that leverages link quality prediction and
prediction reliability. Our solution exploits simple autoregres-
sive (AR) filters to compute short term prediction [8], [9] and
the analytical data rate model we developed in [10]. Thus, we
do not assume a perfect knowledge of future evolution of the
network as in [6], [11], and we are able to extend the prediction
horizon from tens of seconds [12] to the order of minutes.

We develop an optimal resource allocation algorithm that
assumes perfect forecast and a general prediction framework
that combines short and medium/long term prediction. Subse-
quently, we introduce our Imperfect Capacity prediction-Aware
Resource Optimization (ICARO) algorithm, which iteratively
uses the optimal algorithm on a predicted data rate sequence.
Finally, we validate our approach on data traces derived
from measurements performed in Berlin by the MOMENTUM
project [13] and we show that ICARO achieves almost optimal
outage performance and outperforms solution with shorter
prediction horizon.

The rest of the paper is structured as follows: Section II
provides a summary of the related work. Section III describes
the system model and assumptions. In Section IV we present
the omniscient resource allocation algorithm. Section V ana-
lyzes future prediction feasibility and its limits: Section V-A
gives details about the filtering technique used to obtain short
term predictions and Section V-B discusses the statistical tools
for medium to long term forecasting. Section VI provides our
solution for resource allocation under imperfect prediction and
the performance of this algorithm is analyzed in Section VII.
Section VIII provides our final considerations.

II. RELATED WORK

Several recent papers, for example [6], [7], [10]–[12], opti-
mize mobile network resources by exploiting future knowledge
in order to save both energy and cost. The main idea is that it
is better to communicate when the signal quality is good and
refrain from doing so when the signal quality is bad: better
signal quality results in higher spectral efficiency and fewer
resources are needed to send the same amount of data.

For instance, the authors of [6] provide an optimal resource
allocation algorithm exploiting perfect future knowledge, while
the authors of [7], [11] provide a linear programming (LP)
formulation of the resource allocation problem and solve it
with optimal LP solvers. In [12], actual mobility prediction
tools have been used to validate proportionally fair scheduling
algorithms for cellular networks.

2

This paper considers a general formulation of the resource
allocation problem which is not limited to video delivery. As
in other works, it assumes that it is always possible to know
in advance what content the user will be interested in [14]
in order to be able to be able to prefetch data. Also, we
relax the assumption of perfect knowledge of future system
conditions, taking into consideration prediction techniques and
their reliability.

Network capacity prediction has been studied, for example,
in [8], [9] and [10]. These papers evaluate ARMA and GARCH
filtering techniques that account for sequences of random
variables that have the same (homoscedastic) or different (het-
eroscedastic) finite variance respectively. Other papers [15],
[16] investigate mobility prediction using either Markovian es-
timators or trajectory-based forecasting techniques. Margolies
at al. [12] propose an advanced map-based solution to extend
the network forecast to tens of seconds.

A key aspect of our solution is that it accounts for the statis-
tic model we developed in [10], which extends those proposed
in [4], [17] to account for imprecise information. This approach
allows us to extend the prediction horizon to the order of
minutes, without requiring very complex computations.

III. SYSTEM MODEL

In this paper we address the downlink from a base station
of a mobile network (eNodeB) to a single receiver (UE). To
simplify the description of the problem, we consider slotted
time with slot duration t and thus the quantities discussed in
the paper are discrete time series. We use i, j, and k to refer
to slot indices. The quantities of interest are:
• Position P = {pi ∈ [0, Pmax], i ∈ N}, where pi is the
distance between UE and eNodeB and Pmax is the coverage
range.
• Active users N = {ni, i ∈ N}, where ni is the number of
active users that are in the same cell as the UE. It reflects the
congestion level of the cell in slot i.
• Signal to interference plus noise ratio (SINR) S = {si ∈
R, i ∈ N}, where si is obtained from pi as follows:

si = s0p
−α
i fF . (1)

Here, s0 is a system constant, α is the path loss exponent and
fF is a random multiplicative term to account for fast fading.
• User cell capacity C = {ci ∈ [0, Cmax], i ∈ N}, where ci
represents the average capacity obtained by the user during slot
i. Cmax is the maximum capacity allocable to the UE, given
the specific mobile technology. We compute ci as a function
of si and ni through

ci = c0gc(si, ni), (2)

where c0 is a system constant and gc is a technology dependent
function which models system level variables such scheduling
policy, congestion, spectral efficiency, etc. In the rest of the
paper we consider LTE as the mobile network technology and
we adopt the model in [17], which provides a closed form
expression for fF and gc for a user at a given distance from the
base station, when another n−1 users are uniformly distributed
in the cell area and proportionally fair scheduling is used.

• Receive rate R = {ri ∈ [0, ci], i ∈ N}: this is the rate at
which the base station sends data to the UE in slot i.
• Download requirement D = {di ∈ [0, Dmax], i ∈ N}, where
Dmax is the maximum data consumption rate. In slot i, the
user consumes di bytes of data if they are available. If at any
time the user receives more data than required, the excess can
be stored in a buffer for later use.
• Buffer state B = {bi ∈ [0, BM], i ∈ N}, where bi is the
buffer level and BM is the buffer size in bytes.
• Buffer under-run time U = {ui ∈ [0, 1], i ∈ N} is the
fraction of slot i for which no data was available to satisfy the
download requirements.

The aforementioned quantities are linked as follows:

bi+1 = min{max{bi + ri − di, 0}, BM} (3)

ui =

{
max{di − ri − bi, 0}/di di > 0

0 di = 0
. (4)

The buffer fills (up to the full buffer BM) whenever the
download rate is higher than the consumption rate, ri > di. In
case ri < di, the algorithm empties the buffer and accumulates
buffer under-run time whenever bi + ri < di.

In what follows, we refer to function y = gy(x) as gy .
Similarly, we refer to the probability density function and the
cumulative density function (CDF) of a random variable X as
fX(x) and FX(x) =

∫ x
−∞ fX(y)dy and with µX and σX to

its mean and standard deviation.

IV. RESOURCE ALLOCATION OPTIMIZATION WITH
PERFECT FORECAST

The resource allocation problem aims at finding the optimal
rate time series R that satisfies the download requirements D
by using the available capacity C in the most efficient way.
We define the following objective function:

O = {oi = ri/ci ∈ [0, 1], i ∈ N}, (5)

where oi is the fraction of the available capacity used in slot i
and represents a cost. Note that the same rate r has a different
cost oi > oj if the available capacity ci < cj . We obtain the
following optimization problem:

minimize
R

∑
i

oi

subject to:
∑
i

ui =
∑
i

u∗i ,

bi ≤ BM , ∀i ∈ N, (6)

where
∑
i u
∗
i is the minimum feasible buffer under-run time.

To minimize this cost function, the base station should send
more data when the available capacity is high and use just the
minimum rate required to avoid a buffer under-run when the
capacity is low.

The solution of Eq. 6 is the optimal resource allocation
strategy R∗ that achieves the minimum buffer under-run time∑
i u
∗
i at the lowest cost

∑
i o
∗
i . If the sequence C is known a

priori, various offline algorithms can be used to determine the
optimal resource allocation. We propose a simple algorithm

3

that we call Split & Sort (S&S), which splits the optimization
horizon into windows so that allocation decisions belonging
to two different windows can be made independently. Within
each window slots are used in descending order of predicted
capacity. The last slot of each window is called a break-point.

S&S computes the optimal solution of Eq. 6 by using the
following rules: i) define the break-point el as the last slot for
which all previous rates are finalized (i.e., no more rate can be
used in slots up to el) which requires that either bel = BM or
rk = ck,∀el−1 < k ≤ el; ii) define the optimization window
[el + 1,m], where el is the last break-point slot and the rate
allocated in all slots in el−1 < k ≤ el is finalized; iii) starting
from l = 0, el = 0 and m = 1 the algorithm accounts for the
slots in the set {el+1, . . . , el+m} to satisfy the requirements
up to slot el + m; the algorithm chooses a slot if it has the
highest capacity among the unused ones in the set. iv) the
algorithm either increments l, updates el and resets m = 0 if
a break-point is found or increments m. The complete Split &
Sort algorithm is given in Algorithm 1. sAdd(X,x) adds the
element x to the sorted list X in the correct position, π(ci)
gives the position in C of the element ci and shift(D,uj , j)
is a shift function that recomputes the requirements sequence
D accounting for a buffer under-run event uj in slot j. The
following conditions are used:
• I1 := ∃ el < j ≤ el +m | bj = BM to verify whether a full
buffer state is reached,
• I2 :=

∑el+m
j=el+1 cj − rj = 0 to verify whether all of the

available capacity is used, and
• I3 :=

∑el+m
j=el+1 rj − dj = 0 to verify whether all of the

download requirements have been satisfied.
In the following we prove the optimality of Algorithm 1 and

discuss the behavior of the algorithm when knowledge of the
future capacity is not perfect.

Theorem 1 (Split & Sort Optimality): If R is a solution of
Algorithm 1 with C and D as inputs and it achieves a buffer
under-run time

∑
i ui and cost

∑
i oi, then there exists no

other allocation strategy R′ 6= R for C and D that obtains
performance

∑
i u
′
i and

∑
i o
′
i, for which (

∑
i u
′
i <

∑
i ui) ∨

(
∑
i u
′ =

∑
i ui ∧

∑
i <

∑
i oi), i.e., it has either a lower

buffer under-run time or the same buffer under-run time and a
lower cost.

In the following we will prove the theorem by contradiction:
we show that is impossible that a solution exists which is both
different from that provided by S&S and achieves better perfor-
mance, due to either the stopping conditions of the algorithm
or the ordering of the decisions within an optimization window.

Proof: Theorem 1 can be proven by contradiction on the
following hypotheses:
Assume a solution R′ 6= R exists so that

1) either
∑
i u
′
i <

∑
i ui (shorter buffer under-run time)

2) or
∑
i u
′
i =

∑
i ui ⇒

∑
i o
′
i <

∑
i oi (cheaper)

For 1) R cannot satisfy the requirements D in all the slots,
thus

∑
i u
′
i <

∑
i ui ⇒ ∃ j s.t. rj + bj < r′j + b′j < dj .

Since R′ 6= R, they must differ before or on slot j in order
to cause the larger under-run time, because any variation later
than that cannot decrease

∑
i u
′
i. Since R is obtained using

Algorithm 1 and must result in uj > 0, then for all the slots

Algorithm 1 Split & Sort Algorithm (S&S)
Input: the knowledge of the future capacity availability C,

the future download requirements D and the initial buffer
level B0.

Output: R = SS(C,D,B0)
l = 0, el = 0 // set the starting point
bel = B0 // set the starting buffer
rel = 0, R = ∅ // set the starting allocation
while |R| < |D| do
m = 1 // set the initial window size
S = ∅ // sorted capacity vector initialization
while ¬I1 ∧ ¬I2 ∧ |R|+m < |D| do
S = sAdd(S, cel+m) // add an element to the sorted
capacity list
i = 1
while i ≤ m ∧ ¬I3 do
rπ(si),old = rπ(si) // store previous allocation
rπ(si) = min{rπ(si) + del+m, chi

, BM − bπ(si)}
bπ(si)+j = bπ(si)+j + rπ(si) − rπ(si),old,∀ 1 ≤ j ≤
m− π(si)
i = i+ 1

end while
m = m+ 1 // update the window size

end while
if I1 then
l = l + 1, el = j // new break-point

else
l = l + 1, el = el−1 +m // new break-point
if I2 then
uj = max{dj − rj − bj , 0}/dj
D = shift(D,uj , j) // shift of requirements

end if
end if
R = {R, rel−1

, . . . , rel} // update the allocation
end while
return R

belonging to the analysis window [el−1 + 1, el], where el =
j the whole available capacity must have been used, which
means R′ cannot use more capacity there to avoid the buffer
under-run. R′ cannot use more capacity before slot el−1 either,
since that would impact a window already completed (ended
because of condition I1). Thus,

∑
i u
′
i ≥

∑
i ui if the two

strategies are different, which contradicts the first hypothesis.
For 2) it is (R 6= R′)∧(

∑
i ui =

∑
i u
′
i)∧(

∑
i oi <

∑
i o
′
i),

thus the two strategies must differ in at least two slots j, k,
where cj > ck and (rj < r′j) ∧ (rk > r′k). The two slots j, k
cannot belong to the same window, because Algorithm 1 uses
the slots from a sorted list and finishes either with a full buffer
or when the whole capacity has been used. The two slots j, k
cannot belong to different windows either, because if j < k, it
would have been possible to use more capacity earlier in the
allocation which is not possible due to the stopping conditions
of the algorithms, whereas if j > k, a cheaper slot later in the
sequence could have been used instead of a more expensive
one earlier in the sequence. However, this is not possible due to

4

either the fact that the more expensive slot must have been used
in order not increase

∑
i ui (stopping condition I2) or because

of the ordered selection of the slots (stopping conditions I1 or
I3). Thus,

∑
i o
′
i ≥

∑
i oi if the two strategies are different,

which contradicts the second hypothesis.
Thus, assuming that an allocation strategy R′ provides a

better solution than that obtained using Algorithm 1 violates
the hypotheses of the theorem, which is therefore proved.

Algorithm 1 will be later used in Section VI in an itera-
tive procedure to compute the resource allocation when the
knowledge of future capacity is inaccurate.

V. GENERAL FORECAST MODEL

In this section we propose a general model describing the
forecasting reliability of a system. In particular, we split our
model in three time periods based on the prediction horizon:

The short term period considers the near future and predicts
capacity through time-series filtering techniques [8], [9]. It is
characterized by the reliability time τp, which defines how
many slots of the sequence can be predicted. We discuss this
in Section V-A.

The medium term period describes the evolution of the
system in terms of available capacity statistics. During this
period one or more network cells can be accounted to in the
mobility predictor: Markovian predictors [15] can usually com-
pute the likelihood of visiting a given cell, while trajectory-
based predictors [16] provide a more accurate estimate by
computing the actual distribution of the user position over time.

The long term period provides an overall statistical eval-
uation of the available capacity availability based on the
steady state distribution of the user position in the network.
Both the medium and the long term periods are discussed in
Section V-B.

A. Short term forecast with filters
This section addresses the reliability time τp achievable by

filtering techniques applied to available capacity time series. In
particular, we study autoregressive-moving average (ARMA)
filters and their setup according to the system dynamics defined
by the slot time t and the user speed v. We opted for ARMA
instead of GARCH [8], since capacity elements belonging to
the short term period are characterized by the same finite
variance.

For each (t ∈ [0.5, 5], v ∈ [0.5, 5]) tuple we consider a set
of 100 capacity traces computed using Eqns. (1) and (2) as
per [17], starting from the mobility paths of a user moving
at constant speed in a random network deployment. We apply
the Box-Jenkins [18] method to determine the type and the
order of the filter to be used with each sequence. Through the
analysis of autocorrelation and partial autocorrelation plots,
we find that the best technique for our sequences consists of
simple autoregressive (AR) filters of order τF , and that τF is
inversely proportional to the tv product.

Subsequently, for each of the sequences we estimate filter
coefficients by means of the linear least squares procedure [19]
and we use the obtained filter to forecast the values of the
other sequences with the same (t, v) parameters. We refer

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

1.2

Normalized forecast time i/(vt)

N
o
rm

a
li
ze
d
er
ro
r
σ
∆
/
σ
C

τpτp,min τp,max

Fig. 1. The shaded area represents how the standard deviation of the short
term prediction error increases with increasing prediction distance varying the
user speed v and the slot time t. τp represents the time after which σ∆ ≥ σC .

to a forecast sequence as C̃ = {c̃i ∈ [0, Cmax], i ∈ N},
obtained from C and to the corresponding error ∆ = {δi =
c̃i − ci ∈ [−Cmax, Cmax], i ∈ N}. We consider a prediction
to be reliable as long as the standard deviation of the error is
lower than that of the capacity, σ∆ = σC .

Thus, we compute µ∆ and σ∆ as the average and the
standard deviation of all the error sequences with the same
(t, v) parameters. Fig. 1 shows on the abscissa the prediction
time index normalized on t and on the ordinate σ∆/σC the
standard deviation of the prediction normalized on the standard
deviation σC of the original series C.

While the actual steepness of the curves varies with the
parameters, for all of them the normalized error standard
deviation σ∆/σC approaches 1 almost linearly. Hence, we set
τp = argmini s.t. σ∆i/σC > 1. In addition, we observe that
both τp and the filter order can be approximated with simple
linear models with the inverse of the tv product and that τp is
usually 10 times as large as the order of the AR filter.

Finally, it is sufficient to tune a set filters for varying t and v
and select the one to use according to the actual user mobility.
Also, since filters can be normalized on σC it is not needed
to have different filters for different numbers of active users
in the cell, but it is sufficient to rescale the constant and the
variance parameters of the filter.

B. Statistical models and uncertainties

For medium and long term prediction we base the model of
distribution of per user capacity we started on [17], since to
the best of our knowledge it is the only one which takes into
account the scheduler impact and thus is able to model user
contention.

To account for the impact of uncertainties on the user posi-
tion and/or the number of active users in the cell we modify
the expression of the capacity distribution fC(x) obtained for
a specific position pi and number of users ni to the actual
distribution of the user position fP (x) and the probability mass
function fN (n) of the number of active users in the cell, as
follows:

5

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Throughput, x [Mbps]

C
D
F
,F

C
(x
)

No error
N error
P error
Mixed cell

Fig. 2. Examples of the impact of uncertainties on the capacity distribution.

fC(x) =
∑
i∈N

fN (i)

∫ ∞
0

fF,P |i(g
−1
C (x, p), p|i)

∣∣∣∣∂g−1
C (x, p)

∂x

∣∣∣∣dp,
(7)

where fF,P is the joint distribution of fading and position,
gC is the function linking the per user capacity to p and
n and N is the support of fN (n). Since fading and user
position are statistically independent, their joint distribution
fF,P (x, y) = fF (x)fP (y) is the product of their distributions.
Eq. (7) modifies the original capacity distribution weighting
it through the active user probability mass function fN (i)
and the user position probability fP (y); the partial derivative
normalizes the integrand.

For what concerns our analysis, it is sufficient to be able to
compute the per user capacity distribution by accounting for
limited knowledge of the user position and traffic in the cell
by means of their respective distributions.

So far, our model describes capacity only for the case when
the cell the user is connected to is known perfectly. To account
for different cells, it is sufficient to consider the weighted sum
of the capacity distributions of single cells,

fC(x) =
∑
i∈C

ρifC,i(x), (8)

where C is the set of cells that can be visited in the next
time period with some probability, fC,i(x) is the capacity
distribution related to cell i and ρi is the probability of visiting
cell i in the next time period.

Fig. 2 provides a few examples of the CDF obtained using
the model. The solid line is representative of the capacity CDF
FC(x) when both the active user number n = 5 and the
user position p = 500 meters are exactly known so that the
distribution is equal to the fading distribution. The dotted line
accounts for an error in the number of active users in the cell
so that fN (x) = {0.2, 0.6, 0.2} for x = {4, 5, 6} respectively.
Conversely the dashed line is obtained by accounting for an
error in the user position which has a normal distribution with
parameters µP = 500 meters and σP = 100 meters. Finally,
the dash-dotted line is obtained by mixing together two cells
with 5 and 10 users with 20% and 80% of visiting probability
respectively. The piecewise-constant shape of the curves is due
to the discrete relationship between SINR and bitrates.

While practical implementations of this solution can use
different methodologies, in our evaluation campaign we pro-
ceed as follows. From the measurements of the MOMENTUM
project and the channel model in [17] we derive the model for
the capacity distribution for each cell of the network (cells are
defined so that each point of the area is associated to the base
station which has the strongest average SNR). We assume the
user position statistic fP (x) to be uniform in the area (i.e.,
we do not leverage any auxiliary information such as street
topology). Similarly, we computed the cell traversal time τ (i)

as the ratio between the average cell width and the average
user speed. Thus, we are able to define the statistical model
for each cell of the network, while, for the long term period
we use Eq. (8) over the whole area and assume a uniform
distribution among cells.

VI. RESOURCE ALLOCATION OPTIMIZATION UNDER
UNCERTAINTIES

The objective of this section is leveraging the concepts of
the previous ones to design a network resource allocation
algorithm which takes into account imperfect forecast, called
Imperfect Capacity prediction-Aware Resource Optimization
(ICARO). ICARO aims at minimizing the communication
cost while avoiding buffer under-runs. In particular, we use
Algorithm 1 (S&S) of Section IV in an iterative way. At each
iteration, Algorithm 1 makes a single decisions about which
rate r to use by exploiting both the AR predictor described in
Section V-A and the statistical models designed in Section V-B.

Before describing the new algorithm, we describe how
to obtain a single general capacity prediction to use with
Algorithm 1. In order to account for the three time periods
described in Section V we proceed as follows:

1) The short term prediction c̃(F)
i with i ∈ [0, τp] is obtained

from the known past capacity information [20] and choosing
the filter order τF and coefficients based on the user speed v.

2) The medium term model fC,i(x) is computed as the
superposition of the cells j ∈ C that the user is likely to visit
in the i-th time period, each of them accounted for according
to their user position fP,j(y) and active user number fN,j(z)
statistics by Eq. (8). Similarly, the duration of the i-th time
period τi−τi−1, is obtained as a weighted sum of cells traversal
time τ (j) related to cell j ∈ (C).

3) During the i-th time period Di =
∑τi
j=τi−1

dj bytes have
to be downloaded to avoid a buffer under-run. The maximum
cell efficiency is achieved when only the slots with the highest
capacity are used.

4) The highest threshold cT,i is computed so that the average
amount of data obtained by selecting only the slots with larger
capacity than cT is larger than Di/(τi − τi−1):

cT,i = max
y

s.t.

∫ ∞
y

xfC,i(x)dx ≥ Di/(τi − τi−1). (9)

5) The i-th time period is modeled as a sequence of τi−τi−1

values

c̃
(M,i)
j =

{
cT,i j > (1− FC,i(cT,i))(τi − τi−1)

0 otherwise
, (10)

6

20 40 60 80 100 120

P
os
it
io
n
,
P

Time, i

20 40 60 80 100 120

C
ap

ac
it
y,

C

Cell A Cell B

Cell C

C̃
(F)
i C̃

(M,1)
i C̃

(M,2)
i

τp τ1 τ2

Fig. 3. Example of the general prediction model and related user position.

where FC,i(cT,i) is the probability of the capacity being lower
than cT,i, thus (1−FC,i(cT,i))(τi−τi−1) is the average number
of slots with larger capacity than the threshold.

6) Steps 2 to 5 are repeated and new time periods are added
in the sequence if their reliability is sufficient. In our evaluation
campaign we consider two periods only, each related exactly
to one cell: the current and the following which we choose
according to the current mobility direction.

7) Compute τo as the offset time when the user first entered
in the cell.

8) Obtain the predicted capacity sequence as the concatena-
tion of the previously computed time period sequences:

c̃i =



c0 i = 0

c̃
(F)
i 0 < i ≤ τp
c̃
(M,1)
i τp < i ≤ τ1 ∧ τ1 > τp + τo

c̃
(M,2)
i max(τo + τp, τ1) < i ≤ τ2
· · ·
c̃
(M,n)
i τn−1 < i ≤ τn

, (11)

where τn is the duration of the whole sequence, c0 is the known
present capacity, and c̃

(M,1)
i is the current period capacity

distribution. c̃(M,1)
i is modified by accounting for the time

passed from when the user first entered the cell in τo: for
each passed time slot one sample is removed either from the
beginning if c0 < cT, 1 (higher capacity can be found later,
since the current capacity is lower than the current capacity
threshold) or from the end otherwise (capacity is sufficiently
high).

Fig. 3 shows an example of a mixed model sequence: the
upper part compares the ground truth (C as a thin solid
line) to the short term (C̃(F) as a thick solid line) and
the medium-long term (C̃(M,1) and C̃(M,2) as dashed line)
predictions respectively. The lower part is a map of the user
movement (central horizontal arrow) and the coverage areas of
different cells (dashed circles). The shaded area highlights the
uncertainties in future user position. Dash-dotted lines crossing
the figures mark τp, τ1 and τ2 instants.

In every time slot, ICARO (Algorithm 2) computes the
mixed forecast sequence of Eq. (11) and uses Algorithm 1

(S&S) to allocate the rate of the current slot. The algorithm
iterates until the requirements are completely satisfied.

Algorithm 2 Imperfect Capacity prediction-Aware Resource
Optimization (ICARO)
Input: the future download requirement D, user speed v and

position p, τF past values of the capacity sampled with
t period, the capacity statistics fC,i(x) and time period
traversal time τi for the next predictable time periods.

Output: R,O,U
s = 0 // set the starting point
bs = B0 // set the starting buffer
rs = 0, R = ∅ // set the starting allocation
while

∑|D|
i=s di ≥ bs do

compute C̃ as per Eq. (11)
run R̂ = SS(C̃,D, bs) // allocation is computed using
Algorithm 1 on the predicted sequence of Eq. 11
rs = min(r̂1, cs, BM − bs) // rate to be used
compute next buffer state bs+1 according to Eq. (3)
compute buffer under-run us according to Eq. (4)
compute cost os according to Eq. (5)
s = s+ 1
D = {di, s < i ≤ |D|} // remove the first element from
the requirements sequence

end while
return R,O,U

The rationale for using the S&S algorithm on the mixed
forecast sequence is that its operational principle, that selects
which slot to use in descending order, still works under
uncertainties and provides a solution which is conservative (as
the highest capacity slots are placed last) to avoid under-runs,
and aggressive (as the allocation priority is given to the most
reliable slots) to optimize allocation costs. In the following,
we provide a few examples of the algorithm:

Ordering the short term forecast: the elements of the short
term prediction sequence can be assumed to have the same
order of those of the actual sequence. In fact, as we showed in
Section V-A, σδ,i is increasing with i, thus if c̃(F)

i > c̃
(F)
j and

j > i, then the probability of having the same ordering is larger
than that of opposite order (P[ci > cj] > P[ci ≤ cj]). Thus,
the S&S algorithm can be used on the short term prediction,
because its order is likely to match that of the actual sequence.

Comparing short and medium term forecast: the i-
th medium term period is represented as a sequence of
(τi − τi−1)FC,i(cT,i) zero capacity slots while the remaining
slots are equal to cT,i, which represent a worst case scenario
computed on the known capacity distribution. Hence, if the
short term prediction is lower than cT,1 only the minimum
rate is used, since from the statistical model slots of higher
capacity are expected to come later. Conversely, if the short
term prediction is larger than cT,1, then it is more likely that
the remaining slots will be lower than the threshold (see also
step 8 of the sequence creation). In other words, running the
S&S algorithm on this sequence ensures that it buffers enough
data to avoid using the zero-capacity slots by exploiting those
with a capacity larger than cT,1.

7

IC
A
R
O

O
P
T

F
U
L
L

B
u
ff
er

OPT
ICARO
FULL

50 100 150 200 250 300 350

Time, i

C
o
st

OPT
ICARO
FULL

Fig. 4. Comparison among the three main algorithms.

Buffering: the algorithm will always try to use the slots
above threshold in each time period and bridge the gaps
between those by using the buffer. By positioning the slots
with highest capacity at the end of each time periods we ensure
that the algorithm is conservative. Finally, the maximum buffer
size BM limits the optimization horizon of the algorithm: in
fact, the maximum time that the system can last without using
any capacity is given by BM/(

∑
i di/|D|). Hence, the buffer

size has a significant impact on the algorithm’s performance
which we analyze in the next section.

Fig. 4 shows an example of ICARO’s performance compared
to the optimal boundary (OPT) obtained with perfect forecast
and to the trivial (FULL) solution which maintains the buffer
as full as possible at all times. The top three plots show the
used rate R of the three algorithms: ICARO, OPT and FULL
from the top. The shaded areas represent the used part of the
total available capacity (solid line). While FULL continues to
fill the buffer during the low quality period (i = 25), OPT just
uses the needed quantity to harness the best part of the second
cell (i = 50). ICARO’s decisions, even though slightly more
conservative (i.e.: i = 80), are very similar to OPT’s. The last
two plots show the buffer and the cumulative cost variation
respectively.

VII. RESULTS

In this section we provide an analysis of the performance
of our algorithm. In particular we compare ICARO against the
following algorithms:
• OPT: the optimum offline allocation computed with the
optimal S&S algorithm on the exact capacity time series.
• FULL: the most conservative approach which just fills up the
buffer as soon as possible and maintains it as full as possible
until the download requirements are satisfied.
• OPT(x): an optimal algorithm that iteratively makes the
decision on the current slot by running the S&S algorithm
on the first x samples of the exact future capacity. This
algorithm targets a full buffer (or the sum of the remaining
requirements if it is lower than the buffer size) at the end
of the optimization window. This algorithm represent the

Fig. 5. Pathloss map of Berlin as measured by the MOMENTUM project [13]

performance upper bound for any solution using at most x
samples of prediction.

Our main performance metrics are the objective function
O and the buffer under-run time U . To compare the results
of every tested configuration, we adopt the average cost
ξ =

∑
i oi/|O|, the average cost saving η = (

∑
i oi,FULL −

oi,ICARO)/
∑
i oi,FULL obtained by our algorithm, and the

average buffer under-run time increase ζ =
∑
i ui,ICARO −∑

i ui,OPT. In addition, we study the impact of the parameter
x on OPT(x) and compare it to our solution.

Our evaluation campaign considers an LTE network scenario
based on the pathloss data provided by the MOMENTUM
project [13] and accounts for both vehicular and pedestrian
mobility (µv = 5 and 1 meters per second respectively). For
each evaluation round we generate a random mobility trace in
a 12× 6 square kilometer area of Berlin (centered at latitude
52.52◦ North and longitude 13.42◦ East. From the mobility
trace, we generate a pathloss trace computed on the pathloss
map of Fig. 5. Finally, we account for fast fading as per in
the analysis of proportionally fair scheduling in [17] to obtain
the capacity trace. In all experiments we consider an average
number of active users N = 5 uniformly distributed.

Each of the trace represents the ground truth for one of our
experiments and consists of 4000 capacity samples. From the
whole sequence we estimate the parameters of the AR filters
that we use for ICARO (see Section V-A above), while we
run the four algorithms on 10% of the samples only, chosen
starting from a random starting point of the trace. In order to
provide ICARO with the medium and long term parts of the
prediction we assume the following:
• a user stays in a cell for an average time equal to the ratio
between the average cell width (that we computed numerically
for each cell from the MOMENTUM data) and the user speed;
• the capacity distribution of a given cell is computed as per
Section V-B assuming the position to be uniformly distributed
in the area of the cell;
• the current and the next cells are known;
• the long term distribution is the combination of all the cells
visited during the whole trace.

Fig. 6 and Fig. 7 show the main results of our evaluation

8

20 40 60 80 100 120 140 160 180 200

0.08

0.1

0.12

0.14

0.16

20 40 60 80 100 120 140 160 180 200

0.3

0.4

0.5

A
v
er
a
g
e
co

st
,
ξ

20 40 60 80 100 120 140 160 180 200

0.55

0.6

0.65

0.7

0.75

Normalized buffer size, BMC/D

ICARO OPT FULL

D/C = 0.1

D/C = 0.4

D/C = 0.7

50 100 150 200
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1

0.1

0.1

0.1

0.2
0.2

0.2

0.3

Normalized buffer size, BMC/D

N
or
m
al
iz
ed

re
qu

ir
em

en
t,

D
/C

Cost saving, η

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

50 100 150 200
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.02

0.02

0.02

0.02

0.02
0.02

Normalized buffer size, BMC/D

N
or
m
al
iz
ed

re
qu

ir
em

en
t,

D
/C

Under-run time increase, ζ

0.005

0.01

0.015

0.02

0.025

Fig. 6. Performance comparison among ICARO, OPT and FULL with vehicular mobility. ξ, η and ζ are plotted on the left, center and right respectively.

campaign for pedestrian and vehicular mobility respectively:
in both cases we vary the requirement over capacity ratio
(
∑
i di/

∑
i ci) ∈ [0.1, 0.9], and the normalized buffer size

(BM
∑
i ci/

∑
i di) ∈ [1, 200].

Fig. 6 (left) shows the average cost ξ of the three main
algorithms (OPT, ICARO and FULL as solid, dashed and dash
dotted lines, respectively) varying the buffer size (x-axis) for∑
i di/

∑
i ci = {0.1, 0.4, 0.7} (upper, center and lower plots).

The variable horizon algorithm OPT(x) is accounted for in
Fig. 8 and Fig. 9 for better readability.

In the upper plot the download requirements are moderate
and both OPT and ICARO are able to obtain a normalized cost
lower than 0.08 (corresponding to 80% of the

∑
i di/

∑
i ci),

while FULL often needs more than 100% of the average
requirements (ξ ≥ 0.1). The performance is similar in the
other plots and ICARO is always better than FULL and close
to OPT. As expected, ICARO performance improves when the
buffer is larger and the requirements are lower. Notably, when
the buffer is very small the three algorithms perform almost
exactly the same as a too small buffer does not allow leveraging
forecast information.

The central figure shows contour plots of ICARO’s effi-
ciency η using BM

∑
i ci/

∑
i di as abscissa and

∑
i di/

∑
i ci

as ordinate: the curves are labeled according to the cost savings
achieved and the area color changes to red where the savings
are lower than 10%, while it changes to cyan and blue when
it is higher than 15%. Again the best results are obtained
for medium-large buffer size and small requirements where
ICARO is about 25 − 30% cheaper than FULL. On average,
ICARO is 10% worse than OPT.

The figure on the right shows how close ICARO is to
the optimal buffer under-run time obtained by both OPT and
FULL. We plot ζ using the same coordinates as those of
the previous figure. Here the blue part of figure highlights
where ICARO is able to achieve almost optimal performance
(ζ ≤ 0.01), while green and red areas correspond to slightly
worse performance (0.01 < ζ < 0.04). Notably, for no
parameters the buffer under-run time was larger than 0.05, and
the worst performance is obtained for low buffer sizes.

Fig. 7 provides results equivalent to those of the previous
set of figures, but obtained for vehicular mobility. Here, all
the trends identified above are confirmed and ICARO performs
slightly worse than for pedestrian mobility. This is chiefly due

50 100 150 200
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1

0.1
0.1

0.1

0.2
0.2 0.2

0.3

Normalized buffer size, BMC/D

N
o
rm

a
li
ze
d
re
q
u
ir
em

en
t,

D
/
C

Cost saving, η

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

50 100 150 200
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.01

0.01 0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.02

0.02

0.02

0.02

0.02

Normalized buffer size, BMC/D

N
o
rm

a
li
ze
d
re
q
u
ir
em

en
t,

D
/
C

Under-run time increase, ζ

0.005

0.01

0.015

0.02

0.025

0.03

Fig. 7. Performance comparison with pedestrian mobility.

to the higher variability of the capacity traces.
Since ICARO gives priority to avoiding buffer under-runs,

it can obtain higher cost savings when the ratio between
requirements and available capacity is lower. Thus, since ζ
is always lower than 0.05, the algorithm is able to effectively
trade off cost efficiency for robustness and it is able to achieve
up to 30% cost reduction when the conditions are favorable,
but it never behaves too aggressively when the future capacity
estimation does not allow to do so.

Fig. 8 compares the results of the last algorithm OPT(x)
against the length of the prediction horizon x for both ve-
hicular (left) and pedestrian mobility (right). We plot the
results of simulations run for

∑
i di/

∑
i ci = 0.3 and

(BM
∑
i ci/

∑
i di) = 100. OPT(x) is plotted as a solid

black line and clearly shows that performance improves with
increasing x, starting from about the value achieved by FULL
(red dash-dotted line) and reaching the OPT (blue solid line)
performance at about 2 and 10 minutes prediction horizon for
vehicular and pedestrian mobility respectively.

In addition, we plot ICARO performance (green dashed line)
and one vertical line to mark the 1 minute horizon, which is
often used (e.g.: [12]). ICARO is performs very close to the
optimal algorithm with 1 minute horizon for vehicular mobility
and outperforms it for pedestrian.

Fig. 9 plots the CDFs of ∆ξ = ξICARO−ξOPT(x) (left) and
∆ζ = ζICARO − ζOPT(x) (right) for x = 60 seconds and con-
sidering all the parameters range. We colored in blue the part of
the curve where ICARO is achieving better results (∆ξ < 0 or
∆ζ < 0) and red otherwise. Again, ICARO clearly outperforms
the optimal algorithm with limited prediction horizon when

9

6 s 1 m

0.24

0.26

0.28

0.3

0.32

0.34

0.36

Prediction horizon, x

A
ve
ra
g
e
co
st
,
ξ

Vehicular

OPT(x)
OPT
FULL
ICARO

1 m 10 m

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

Prediction horizon, x

A
ve
ra
g
e
co
st
,
ξ

Pedestrian

OPT(x)
OPT
FULL
ICARO

Fig. 8. OPT(x) performance against prediction horizon x compared with
the other algorithms for vehicular (left) and pedestrian mobility (right).

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2
0

0.2

0.4

0.6

0.8

1

δ

F
∆

ξ
(δ
)

Vehicular
Pedestrian

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02
0

0.2

0.4

0.6

0.8

1

δ

F
∆

ζ
(δ
)

Vehicular
Pedestrian

Fig. 9. Performance gap CDF between ICARO and OPT(x) for x = 60
seconds (e.g.: [12]). Cost and buffer under-run time gaps on the left and right
respectively.

the mobility is pedestrian (average cost gap E[∆ξ] ≈ −7.1%
average buffer under-run time gap E[∆ζ] ≈ −0.02), while
the two solutions performs very close in the case of vehicular
mobility (E[∆ξ] ≈ 3.4% and E[∆ζ] ≈ 0).

Combining close to optimal performance and low complex-
ity, ICARO shows that combining short term prediction with
medium-long term statistical consideration makes for a robust
solution in prediction-based resource optimization. Finally,
compared to the wide-spread full buffer strategy an ICARO-
based system is able to sustain the same quality of service
while saving up 30% of the network resources or, analogously,
30% more users can be served with the same capacity.

VIII. CONCLUSION

In this paper we addressed the problem of resource op-
timization for mobile networks under imperfect prediction
of future available capacity. To this aim we developed a
general prediction model that encompass short to medium-long
term forecast. This joint estimation technique is the basis for
ICARO, a lightweight resource optimization algorithm which
achieves close-to-optimal performance. It achieves nearly op-
timal performance for vehicular mobility and outperforms the
state of the art solution under pedestrian models. In addition,
ICARO is effective in the robustness/efficiency trade off. As
a final remark, ICARO is a practical resource optimization
algorithm that does not require highly complex prediction
techniques as it is only based on autoregressive filtering
and simple statistic considerations. As future work we are
extending ICARO to multi-user multi-quality scenarios, where
different user prediction and decisions will be intertwined.

ACKNOWLEDGMENT

The research leading to these results was partly funded by
the European Union under the project eCOUSIN (EU-FP7-
318398) and by the Madrid Regional Government through the
TIGRE5-CM program (S2013/ICE-2919).

REFERENCES

[1] T. Chiang, “What’s expected of us,” Nature, vol. 436, no. 7047, pp.
150–150, 2005.

[2] S. Wang, Y. Xin, S. Chen, W. Zhang, and C. Wang, “Enhancing
spectral efficiency for LTE-advanced and beyond cellular networks
[Guest Editorial],” IEEE Wireless Communications, vol. 21, no. 2, pp.
8–9, April 2014.

[3] U. Paul, A. P. Subramanian, M. M. Buddhikot, and S. R. Das,
“Understanding traffic dynamics in cellular data networks,” in IEEE
INFOCOM, Shangai, China, April 2011, pp. 882–890.

[4] M. Z. Shafiq, L. Ji, A. X. Liu, and J. Wang, “Characterizing and model-
ing internet traffic dynamics of cellular devices,” in ACM SIGMETRICS,
New York, NY, USA, 2011, pp. 305–316.

[5] M. C. Gonzalez, C. A. Hidalgo, and A.-L. Barabasi, “Understanding
individual human mobility patterns,” Nature, vol. 453, no. 7196, pp.
779–782, 2008.

[6] Z. Lu and G. de Veciana, “Optimizing stored video delivery for mobile
networks: The value of knowing the future,” in IEEE INFOCOM, Turin,
Italy, April 2013, pp. 2706–2714.

[7] H. Abou-zeid, H. Hassanein, and S. Valentin, “Energy-efficient adaptive
video transmission: Exploiting rate predictions in wireless networks,”
IEEE Transactions on Vehicular Technology, vol. 63, no. 5, pp. 2013–
2026, June 2014.

[8] N. Sadek and A. Khotanzad, “Multi-scale high-speed network traffic
prediction using k-factor gegenbauer arma model,” in IEEE ICC, vol. 4,
Paris, France, June 2004, pp. 2148–2152.

[9] Y. Qiao, J. Skicewicz, and P. Dinda, “An empirical study of the
multiscale predictability of network traffic,” in IEEE HDPC, Honolulu,
Hawaii USA, June 2004, pp. 66–76.

[10] N. Bui, F. Michelinakis, and J. Widmer, “A model for throughput
prediction for mobile users,” in European Wireless, 2014.

[11] H. Abou-zeid, H. Hassanein, and S. Valentin, “Optimal predictive
resource allocation: Exploiting mobility patterns and radio maps,” in
Proc. IEEE GLOBECOM, 2013.

[12] R. Margolies, A. Sridharan, V. Aggarwal, R. Jana, N. Shankara-
narayanan, V. A. Vaishampayan, and G. Zussman, “Exploiting mobility
in proportional fair cellular scheduling: Measurements and algorithms,”
in Proc. IEEE INFOCOM, 2014.

[13] H.-F. Geerdes, E. Lamers, P. Lourenço, E. Meijerink, U. Türke,
S. Verwijmeren, and T. Kürner, “Evaluation of reference and public
scenarios,” IST-2000-28088 MOMENTUM, Tech. Rep. D5.3, 2003.
[Online]. Available: http://momentum.zib.de/paper/momentum-d53.pdf

[14] M. Ahmed, S. Spagna, F. Huici, and S. Niccolini, “A peek into the
future: predicting the evolution of popularity in user generated content,”
in ACM WSDM, Rome, Italy, February 2013, pp. 607–616.

[15] A. J. Nicholson and B. D. Noble, “Breadcrumbs: forecasting mobile
connectivity,” in ACM MobiCom, 2008.

[16] J. Froehlich and J. Krumm, “Route prediction from trip observations,”
SAE SP, vol. 2193, p. 53, 2008.

[17] O. Østerbø, “Scheduling and capacity estimation in lte,” in IEEE ITC,
San Francisco, CA, USA, September 2011, pp. 63–70.

[18] S. Makridakis and M. Hibon, “ARMA Models and the Box-Jenkins
Methodology,” Journal of Forecasting, vol. 16, no. 3, p. 147, 1997.

[19] J. D. Hamilton, Time series analysis. Princeton university press
Princeton, 1994, vol. 2.

[20] F. Michelinakis, N. Bui, G. Fioravantti, J. Widmer, F. Kaup, and
D. Hausheer, “Lightweight mobile bandwidth availability measure-
ment,” in Proc. IFIP Networking, 2015.

